COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>NATURAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>BIOLOGY</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDERGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>BIO_ΖΕ02</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>5/7</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

<table>
<thead>
<tr>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures 3 (lec)</td>
<td>3</td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

Field of Science
Special background, Skills Development

PREREQUISITE COURSES:

There are no prerequisites. However, a good knowledge of Animal Physiology I & II and Biochemistry is recommended.

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek

IS THE COURSE OFFERED TO ERASMUS STUDENTS:

NO

COURSE WEBSITE (URL)

https://eclass.upatras.gr/courses/BIO229

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

At the end of this course the student should be able to:
- acquired knowledge on subjects related to Human Physiology.
- Familiarised themselves with medical terms and the use of novel high-throughput techniques for studying the pathophysiology of diseases.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, Project planning and management
- Adapting to new situations, Respect for difference and multiculturalism
- Decision-making, Respect for the natural environment
- Showing social, professional and ethical responsibility and
At the end of the course, students should have accomplished the following abilities:

- 1. to comprehend subjects related to special courses in Human pathophysiology (tissue/organ pathophysiology, bone physiology, reproductive System of man and woman, artificial organs, nutrition and metabolism regulation of food intake and its related diseases etc. Subjects related to novel, high-throughput techniques and their application to human diseases/diagnosis (e.g. microarrays, proteomics).
- 2. to retrieve related scientific information on Human Physiology.
- 3. to write assays on Human Physiology
- 4. team-working
- 5. to prepare power-point presentations.

(3) SYLLABUS

Special aspects of human physiology such as:
- Tissue/organ pathophysiology (e.g. skin immunology, atherosclerosis, connective tissue pathologies, blood diseases etc)
- Bone physiology, Reproductive System of man and woman
- Artificial organs
- Nutrition and metabolism
- Regulation of food intake and its related diseases etc.
- Subjects related to novel, high-throughput techniques and their application to human diseases/diagnosis (e.g. microarrays, proteomics).

(4) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Face to face, Distance learning, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY</td>
<td>Lectures (using power-point presentations).</td>
</tr>
<tr>
<td>TEACHING METHODS</td>
<td>Activity</td>
</tr>
<tr>
<td>Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.</td>
<td>Lectures (13 weeks x 3 hours per week)</td>
</tr>
<tr>
<td>The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS</td>
<td>Home study</td>
</tr>
<tr>
<td></td>
<td>Course total</td>
</tr>
<tr>
<td>STUDENT PERFORMANCE EVALUATION</td>
<td>Written exams at the end of semester (60% and oral presentations 40 % or 100 % without assay and oral presentation).</td>
</tr>
<tr>
<td>Description of the evaluation procedure</td>
<td>Final Course Grade: Theory Grade x 0.6 + x 0.4 assay and oral presentation or only Theory Grade</td>
</tr>
</tbody>
</table>
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

Grading scale: 1-10. Passing grade ≥ 5
Grading ≤3 correspond to ECTS grade F.
Grade 4 corresponds to ECTS grade FX.
Passing grades correspond to ECTS grades as follows:
5=E, 6=D, 7=C, 8=B, ≥9=A.

(5) ATTACHED BIBLIOGRAPHY

- Related academic journals:

