COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>NATURAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>BIOLOGY</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDERGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>BIO_ΣΤΥ4</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>6th</td>
</tr>
</tbody>
</table>

| COURSE TITLE | ANIMAL PHYSIOLOGY II |

INDEPENDENT TEACHING ACTIVITIES

If credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits.

| Lectures, Laboratory Exercises | 3 (lec) + 3 (lab/2nd week) | 6 |

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

Field of Science
Skills Development

PREREQUISITE COURSES:
NO

LANGUAGE OF INSTRUCTION and EXAMINATIONS:
Greek

IS THE COURSE OFFERED TO ERASMUS STUDENTS:
NO

COURSE WEBSITE (URL)
https://eclass.upatras.gr/courses/BIO245/

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Understanding the basic principles of physiological functions of human and animals.
At the end of this course the student will be able to address issues of the basic principles of structure/function of cardiovascular system, respiratory system, peptic system, urinary and endocrine system etc

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?
Search for, analysis and synthesis of data and information, with the use of the necessary technology, adaptation to new situations, decision-making, working independently, teamwork, working in an international environment, working in an interdisciplinary environment, production of new research ideas, project planning and management, respect for difference and multiculturalism, respect for the natural environment, showing social, professional and ethical responsibility and sensitivity to gender issues, criticism and self-criticism, production of free, creative and inductive thinking, others...

At the end of the course, the student will have developed the following skills/competences:

1. Get familiar with basic laboratory equipment in order to measure physiological parameters and be able to perform laboratory-based experiments,
2. Observe microscopic specimens/slides of the normal and anaemia blood smears (thalassaemia, Erythroblastosis Fetalis etc),
3. Understand and analyse normal ECG
4. Work as part of a team, capable of planning, execute and record experimental procedures/data

(3) SYLLABUS

1. Blood
2. Circulatory system
3. Electrical activity of the heart.
4. Central and peripheral control of cardiac output.
5. Respiratory system. Control of breathing.
7. Elements of renal function.
8. General principles of endocrine physiology

(4) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Face to face, lectures and laboratory training</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY</td>
<td>Lectures (using power-point presentations) and support of educational procedure with use of the e-class electronic platform</td>
</tr>
<tr>
<td>TEACHING METHODS</td>
<td>The manner and methods of teaching are described in detail.</td>
</tr>
<tr>
<td>Activity</td>
<td>Semester workload</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Lectures (13 weeks x 3 hours per week)</td>
<td>39</td>
</tr>
</tbody>
</table>
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory exercises (5 weeks x 3 hours per week)</td>
<td>15</td>
</tr>
<tr>
<td>Home study</td>
<td>96</td>
</tr>
<tr>
<td>Course total</td>
<td>150</td>
</tr>
</tbody>
</table>

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

1) Written exams (at the semester’s end), in Course theory, accounting for the 80% of the Final Grade.
2) Laboratory exams (at the semester’s end), accounting for the 20% of the Final Grade.

Final Course Grade: Theory Grade x 0.8 + Laboratory Grade x 0.2

Grading scale: 1-10. Passing grade: 5
Grading: 3 correspond to ECTS grade F. Grade 4 corresponds to ECTS grade FX.
Passing grades correspond to ECTS grades as follows: 5=E, 6=D, 7=C, 8=B, 9=A.

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
- Related academic journals:

