COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>NATURAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>BIOLOGY</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDERGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>BIO_HB2</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>6/8</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>HUMAN AND MEDICAL GENETICS</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

<table>
<thead>
<tr>
<th>WHOLE COURSE</th>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

If credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits.

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

Scientific

PREREQUISITE COURSES:

There is no prerequisite course, but good knowledge of Genetics I and II is desirable.

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek language

IS THE COURSE OFFERED TO ERASMUS STUDENTS:

Yes, in English language

COURSE WEBSITE (URL)

www.biology.upatras.gr

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

At the end of the semester, the students will have gain of issues relative to genetic diseases and understand:

1. The contribution of Genetics in Modern Medicine.
2. The role of mutation on genetic diseases.
3. The use of molecular methodology to understand genetic diseases.
4. The importance of genetic counselling to avoid birth of humans with genetic diseases.
General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Working in an international environment
- Working in an interdisciplinary environment
- Production of new research ideas
- Project planning and management
- Respect for difference and multiculturalism
- Respect for the natural environment
- Showing social, professional and ethical responsibility and sensitivity to gender issues
- Criticism and self-criticism
- Production of free, creative and inductive thinking
- Others...

- Autonomous work
- Teamwork
- Search, analyze and synthesize data and information, using the necessary technologies
- Promote free, creative and inductive thinking

(3) SYLLABUS

1. Genetic pedigrees and genetic diseases.
2. Using molecular methodology in Medical Genetics.
3. Cytogenetics, Human chromosomes,-structural and numerical chromosome aberrations.
5. Developmental genetics.
6. Genetics of blood groups.
8. Inborn error of metabolism.
9. Genetics of the immune system disorders.
11. Pharmacogenetics-Pharmacogenomics.
13. Human genome project.
15. Prenatal analysis and genetic counselling.

*Παρουσίαση με χρήση πολυμέσων: Επίλεγμένη ύλη σχετική με γενετικά νοσήματα.
(4) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face-to-face, Distance learning, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of ICT in teaching, laboratory education, communication with students</td>
</tr>
</tbody>
</table>

TEACHING METHODS

The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>26</td>
</tr>
<tr>
<td>Writing and oral presenting of a scientific project</td>
<td>25</td>
</tr>
<tr>
<td>Independent study</td>
<td>40</td>
</tr>
</tbody>
</table>

| Course total | 91 |

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

Theoretical written examinations at the end of the semester which evaluates student’s acquired knowledge and critical and creating thinking.

Greek grading scale: 1 to 10. Minimum passing 5.

(5) ATTACHED BIBLIOGRAPHY

- **Suggested bibliography:**

- **Related academic journals:**