COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>NATURAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>DEPARTMENT OF BIOLOGY</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDERGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>BIO_ΓΥ01</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE TITLE CELL BIOLOGY I

INDEPENDENT TEACHING ACTIVITIES
- Lectures
 - 3 hours
 - 6 credits
- Practical exercises
 - 3 hours

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE
- Scientific specialized background

PREREQUISITE COURSES:
- Formally there are no prerequisites.
- However, knowledge of Biochemistry is recommended

LANGUAGE OF INSTRUCTION and EXAMINATIONS:
- Greek

IS THE COURSE OFFERED TO ERASMUS STUDENTS

COURSE WEBSITE (URL)

(2) LEARNING OUTCOMES

Learning outcomes
The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The students will understand the structure and function of the nucleus, plasma membrane and ER, mitochondria and chloroplasts and will understand how the cell interacts with the micro environment and other cells.
General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

<table>
<thead>
<tr>
<th>Competence</th>
<th>Course Aim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for, analysis and synthesis of data and</td>
<td>Project planning and management</td>
</tr>
<tr>
<td>information, with the use of the necessary technology</td>
<td></td>
</tr>
<tr>
<td>Adapting to new situations</td>
<td>Respect for difference and multiculturalism</td>
</tr>
<tr>
<td>Decision-making</td>
<td>Showing social, professional and ethical</td>
</tr>
<tr>
<td>Working independently</td>
<td>responsibility and sensitivity to gender issues</td>
</tr>
<tr>
<td>Team work</td>
<td>Criticism and self-criticism</td>
</tr>
<tr>
<td>Working in an international environment</td>
<td>Production of free, creative and inductive</td>
</tr>
<tr>
<td>Working in an interdisciplinary environment</td>
<td>thinking</td>
</tr>
<tr>
<td>Production of new research ideas</td>
<td>Others...</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Decision-making

SYLLABUS

Methodology and Implementation of the teaching and pedagogical approach in Cell Biology.

TEACHING and LEARNING METHODS - EVALUATION
DELIVERY
- Face-to-face, Distance learning, etc.

Face to face lectures in classroom and lab

USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
- Use of ICT in teaching, laboratory education, communication with students

TEACHING METHODS
- Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>39</td>
</tr>
<tr>
<td>Lab practice</td>
<td>15</td>
</tr>
<tr>
<td>Lab reports</td>
<td>15</td>
</tr>
<tr>
<td>Course study</td>
<td>81</td>
</tr>
</tbody>
</table>

Course total 150

STUDENT PERFORMANCE EVALUATION
- Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

For every lab exercise students are asked to make a report based on the procedure and the techniques they have been trained.

The final examination of the course includes 4 general questions, 4 overall questions to proceed and 2 practical problems to solve with the use of the techniques they have learned in lab practice

The evaluation criteria are mentioned at the e-class of the course.

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Related academic journals: