COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>NATURAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>BIOLOGY</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDERGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>BIO_TE04</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>5/7</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>FOOD CHEMISTRY AND TECHNOLOGY</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

Lectures	4	6
Seminars		
Laboratory work	4	

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

Field of Science and Skills Development.

PREREQUISITE COURSES:

There are not prerequisite courses.

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek. Teaching may be however performed in English in case foreign students attend the course.

IS THE COURSE OFFERED TO ERASMUS STUDENTS

Yes

COURSE WEBSITE (URL)

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

By the end of this course the student will acquire the necessary knowledge on:

1. Chemistry, nutritional value, microbiology, and methods of production of carbohydrate-, protein- and fat-containing foods, juices, alcoholic beverages and dairy products at industrial, semi-industrial and/or household scale.

2. Industrial practices and new trends on improving the quality and the production processes of food, as well as for the production of new foods with health benefits.

3. The importance of fermentation technology in food production and the linking of biotechnology with the food industry.
Applying analytical methods for the determination of food composition.

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology	Project planning and management
Adapting to new situations	Respect for difference and multiculturalism
Decision-making	Respect for the natural environment
Working independently	Showing social, professional and ethical responsibility and sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment
Production of new research ideas	Others...

By the end of this course the student will acquire:

1. Practical skills for the separation and analysis of food ingredients using classical and instrumental analytical techniques.

2. Ability to recognize the role and nutritional value of food ingredients in order to adapt their daily diet to the benefit of their own health and to deal with problems (diet, diabetes, anaemia, etc.) and to be able to advise other people respectively.

3. Capability to assess the nutritional value of industrial foods.

4. Knowledge on the production of different types of wine (dry, sweet, red, white).

5. Ability to assess the impact of the various processes of food production on its composition and quality.

6. Possibility to seek employment in companies, industries and laboratories, the majority of which in Greece are in the food sector.

7. Ability to critically evaluate knowledge for the selection of appropriate products/technologies to create new companies of food production, processing, or analysis.

8. Ability to have a consulting role in food production, processing, and analysis companies and to seek employment in these companies.

Generally, by the end of this course the student will have further developed the following general abilities (from the list above):

- Searching, analysis and synthesis of facts and information, as well as using the necessary technologies
- Adaptation to new situations
- Decision making
- Autonomous (independent) work
- Group work
- Work in interdisciplinary environment
- Exercise of criticism and self-criticism

Promotion of free, creative and inductive thinking

8. Citrus juice industry: Raw material, juicing, factors that affect the quality of juice, heat treatment of citrus juices, concentration of citrus juices, essential oils.

11. Milk Technology: Composition, microbiology, treatments (filtration, cooling, pasteurization, condensation, homogenization, decreaming).

Laboratory exercises:

1. Analytical presentation of all laboratory exercises-Tutorial.

2. Flour analysis: (a) Determination of gluten. (b) Ash determination. (c) Detection of oxidants.

3. Oil Analysis: (a) Saponification number. (b) Degree of acidity. (c) Iodine number. (d) Colour reactions. (e) Detection of antioxidant additives and paraffin oil in olive oil by thin layer chromatography.

4. Milk analysis: (a) Protein determination by the Kjeldahl method. (b) Fat determination by the Gerber method. (c) Specific weight.

5. Determination of total fat in olive pit or cocoa or nuts by Soxhlet extraction.

6. Sugar analysis: Determination of (a) reducing sugars, (b) total sugars, and (c) sucrose in
7. Sugar analysis: Determination of (a) glucose, (b) fructose, and (c) detection of sugar syrup, and (d) starch syrup in honey.

8. Oenology: *Saccharomyces*. (a) Preparation of wet and solid yeast culture. (b) Preparation of liquid yeast culture in must in order to enhance the fermentation of wine. (c) Determination of yeast concentration in fermenting must.

9. Oenology: Examination and alcoholic fermentation of grape must. (a) Measurement of density. (b) Determination of total acidity. (c) Corrections of must. (d) Alcoholic fermentation for white dry wine. (e) Alcoholic fermentation for red sweet wine. (f) Preparation of Mistelle. (g) Rapid alcoholic fermentation by addition of yeast. Kinetics of fermentation. Determination of cell concentration. (h) Microscopic examination of yeasts (observation of healthy cells, dead cells, bacteria contamination). Microscopic examination of yeast cells prior to fermentation.

10. Oenology: Chemical analysis of wines: (a) alcoholic strength, (b) total acidity, (c) volatile acidity, (d) free sulphite, (e) bound sulphite, (f) total sulphite.

12. Gas chromatographic analysis of oils (fatty acid methyl esters).

13. Sensory evaluation of wine.
(4) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face-to-face, Distance learning, etc.</td>
</tr>
</tbody>
</table>

1. Face-to-face lectures using Information and Communication Technologies (ICTs) (e.g. powerpoint), and presentation of the theoretical background of the laboratory exercises.

Laboratory exercises in groups of 2-3 students.

<table>
<thead>
<tr>
<th>USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of ICT in teaching, laboratory education, communication with students</td>
</tr>
</tbody>
</table>

Use of ICTs (e.g. powerpoint) in teaching. The lectures content of the course for each chapter are uploaded on the internet, in the form of a series of .ppt files, where from the students can freely download them using a password, which is provided to them at the beginning of the course.

<table>
<thead>
<tr>
<th>TEACHING METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.</td>
</tr>
</tbody>
</table>

The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures (4 contact hours per week x 13 weeks)</td>
<td>52</td>
</tr>
<tr>
<td>Εργαστήριο (4 contact hours per week x 13 weeks)</td>
<td>52</td>
</tr>
<tr>
<td>Final exam (6 contact hours)</td>
<td>6</td>
</tr>
<tr>
<td>Hours for private study of the student and preparation for the final examination.</td>
<td>40</td>
</tr>
</tbody>
</table>

Course total 150 hours (total student work-load)

<table>
<thead>
<tr>
<th>STUDENT PERFORMANCE EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of the evaluation procedure</td>
</tr>
</tbody>
</table>

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

1. Laboratory exercises (40% of the final course grade).
 Average score of oral and written test after the end of each exercise, and final written examination of the laboratory exercises.

2. Final written exam (60% of the final grade).
 All the above take place in the Greek language, as well as in English for foreign students (e.g. ERASMUS students).
(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
1. A. A. Koutinas & M. Kanellaki. Food Chemistry and Technology. University of Patras, Patras, 2009-2010 (in Greek language only)
2. E. Voudouris & M. Kontominas. Introduction to Food Chemistry. Eds OEDB, 2006, Greece (in Greek language only)

- Related academic journals: