GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>NATURAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>BIOLOGY</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDERGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>BIO_EA4</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>5/7</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>ELEMENTS OF GEOLOGY AND PALAEONTOLOGY</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

<table>
<thead>
<tr>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures and laboratory work</td>
<td>2 (lect.), 2 (lab.)</td>
</tr>
</tbody>
</table>

COURSE TYPE

Basic and Skills Development, Scientific Field

PREREQUISITE COURSES:

Typically, there are not prerequisite courses

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek

IS THE COURSE OFFERED TO ERASMUS STUDENTS

Yes, teaching may be however offered in English in case foreign students attend the course.

COURSE WEBSITE (URL)

https://eclass.upatras.gr/courses/BIO336/ (in Greek)

LEARNING OUTCOMES

Learning outcomes

Upon successful completion of this course the students will be able to:

- understand the basic principles of geology and palaeontology
- interpret the the dynamics of the planet
- identify and appreciate the evolution of the living and abiotic world
- apply methods and practices for extracting results in relation to maps and the stratigraphy of an area
- know about the fossils which are the proof of evolution, and their use in geological research
- distinguish fossilized from extant organisms
- know about the origin, development and evolution of life, what extinction events are, when they occur and what impact they have on the evolution of life
- understand that land is a constantly changing world and these changes are directly related to the evolution and shaping of life on earth.

General Competences

Generally, by the end of this course the student will, furthermore, have developed the following general abilities:

- Adjusting to new conditions.
- Independent work.
- Group work.
- Working in a multidisciplinary environment
- Respecting the environment.
- Promoting free and creative thinking.
- Generating new research ideas.

SYLLABUS

Theory

- Characteristics and dynamics of planet Earth.
- Geological time and dating
- Introduction to Petrography
- Evolution of the climate and the environment in the history of the Earth.
- Fossils - Fossilization - Fossil Categories – Types of Fossilisation - Types of Fossils
- Palaeontological Species Definition
- Palaeoecology - Taphonomy.
- What life is - Appearance and evolution of life on Earth – Extinction events
- Life during the Cryptozoic Eon
- Life during the Phanerozoic Eon
- Evolution of Vertebrates: fishes, amphibians, reptiles, birds, mammals, primates.
Practical
- Positioning and map building
- Analysis and interpretation of granulometric data
- Interpretation of palaeoenvironmental data
- Study of fossils
- Familiarizing with some of the most important and common groups of organisms we encounter as fossils and which appeared and dominated during the Phanerozoic Eon.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY
Lectures and laboratory practice face to face.

USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
Use of Information and Communication Technologies (ICTs) (powerpoint) in teaching. Supporting teaching and communication through e-class. The lectures content of the course are uploaded on the e-class platform, in the form of a series of ppt files, from where the students can freely download them.

TEACHING METHODS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures (2 conduct hours per week x 13 weeks)</td>
<td>2X13 = 26</td>
</tr>
<tr>
<td>Laboratory work (2 conduct hours per week x 13 weeks)</td>
<td>2X13 = 26</td>
</tr>
<tr>
<td>Hours for the preparation of laboratory work reports</td>
<td>23</td>
</tr>
<tr>
<td>Hours for private study of the student</td>
<td>25</td>
</tr>
<tr>
<td>Course total</td>
<td>100 hours</td>
</tr>
</tbody>
</table>

STUDENT PERFORMANCE EVALUATION

Theory
- Assessment Language: Greek
- Final Examination: Written, Graded Difficulty, which may include Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problems-Exercises.
- **Rating Scale:** 0-8.

Laboratory
- Assessment of students’ participation and performance in exercises given during the semester through written reports for each laboratory exercise.
- **Rating Scale (total):** 0-2
- The final grade of the course is the sum of the grades of the Theory and the Laboratory.
- **Minimum Pass Grade:** 5

ATTACHED BIBLIOGRAPHY

- **Suggested bibliography:**
 Clarkson, E., 1998, Invertebrate Palaeontology and evolution, Wiley-Blackwell
 Benton M.J., 2005, Vertebrate Paleontology, Blackwell Science Ltd
 Levin, H., 2013, The Earth through time, Wiley
 Notes of lecturers in English.